Overflow Oscillations in Digital Filters

By P. M. EBERT, JAMES E. MAZO,
AND MICHAEL G. TAYLOR

(Manuscript received May 9, 1969)

The cascade and parallel realizations of an arbitrary digital filler are
both formed using second order sections as building blocks. This simple
recursive filler is commonly implemented using 2's complement arithmetic
for the addition operation. Overflow can then occur at the adder and the
resulting nonlinearity causes self-oscillations in the filter. The character
of the resulting oscillations for the second order section are here analyzed
in some detail. A simple necessary and sufficient condition on the feedback
tap gains to insure stability, even with the presence of the nonlinearity, 18
given although for many desired designs this will be too resirictive. A
second question studied is the effect of modifying the “‘arithmetic’” in order
to quench the oscillations. In particular it is proven that if the 2’s comple-
ment adder is modified so that il “‘saturates” when overflow occurs, then no
self-oscillations will be present.

I. INTRODUCTION

A digital filter using idealized operations can easily be designed to be
stable.! Nevertheless, in actual implementations, the output of such a
stable filter can display large oscillations even when no input is present.*
A known cause of this phenomenon is the fact that the digital filter
realization of the required addition operation can cause overflow,
thereby creating a severe nonlinearity.” Our purpose here is twofold.
The first is to give a somewhat detailed analysis of the character of the
oscillations when the filter is a simple second order recursive section with
two feedback taps. This unit is the fundamental building block for the
cascade and the parallel realization of digital filters, and as such is
worthy of some serutiny.® A simple conclusion which one can draw from

* To the best of our knowledge, these oscillations were first observed and diagnosed
by L. B. Jackson of Bell Telephone Lahoratories.

t In the present work rounding errors in multiplication or storage are neglected

and therefore so are the little-understood oscillations attendant upon these non-
linearities.
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the analysis is that the design of many useful filters requires using values
of feedback coefficients such that the threat of oscillations is always
present (with 2’s complement arithmetic). Optimum solutions that cope
with this state of affairs are still unknown. Some recent proposals include
observing when overflow at the adder is to occur and then taking ap-
propriate action. Our second purpose, then, is to discuss the effectiveness
of some of these ideas, and to give a proof that modifying 2’s complement
arithmetic so that the adder “saturates’ is an effective way to eliminate
the oscillations. Questions of how this nonlinearity will affect the desired
outputs from a particular ensemble of input signals are not yet answered
however, and perhaps for some applications other solutions need be
considered.

II. PROBLEM FORMULATION AND GENERAL DISCUSSION

As explained in the introduction, this paper deals primarily with the
simple structure shown in Fig. 1. The outputs of the registers, which
are storage elements with one unit of delay, are multiplied by coef-
ficients a and b respectively, fed back, and ‘‘added” to the input in the
accumulator. No round-off error is considered either in multiplication
or storage, but overflow of the accumulator is not neglected. In other
words, the accumulator will perform as a true adder if the sum of its
inputs is in some range; otherwise a nonlinear behavior is observed.

Figure 2 shows the instantaneous input-output characteristic f(v)
of the device motivated by using 2’s complement arithmetic. It is also
important to note that there is no memory of the accumulator for
past outputs; that is, the device is zeroed after the generation of each
output.

If we let () be the input signal to the device, y(¢) the output, and

]
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Fig. 1 — Basic configuration for the digital filter-yzi2 = fleyen + byx + ak4als
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Fig. 2 — Instantaneous transfer function of the accumulator.

f(-) the nonlinear characteristic of the accumulator, we have the basic
equation

y(t + 2) = flayt + 1) + by(®) + =(t + 2)]. (1)

We shall be concerned with the self-sustaining oscillations of the device
that are observed even when no input is present [z(f) = 0], and when
linear theory would predict the device to be stable.

By making this linear approximation f(») = v, the linearized version
of equation (1) becomes, with no driving term in the equation,

y(t 4+ 2) — ay(t + 1) — by(t) = 0. (2)

The roots of the characteristic equation for equation (2) are

* + 4b)t
Pra = ”'_:'_:_(22__}____)_ 3)

and the region of linear stability corresponds to the requirement that
| p: | < 1. This region is depicted as a subset of the a-b plane in Fig. 3.
One has | p; | < 11if and only if one is within the large triangle shown in
Tfig. 3. I'or this situation any solution of (2) will damp out to zero after
a sufficient period of time. Now note that (2) is not necessarily a valid
reduction of (1) even when x(¢) = 0. The output, by choice of f, has been
assumed to be constrained to be less than unity, but this is not sufficient
to guarantee that the argument of the function f is less than unity. For
this to be the case we require

[ay(t + 1) + by() | < L. (4)
Since | y(f) | < 1, equation (4) will always be satisfied provided that
lal+ 0] <1 (5)
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Fig. 3—Some interesting regions in the “‘space’ of feedback tap weights. The hatching
indicates stability even with the nonlinearity.

The subset of the a-b plane for which (5) is true is shown in Fig. 3
with vertical hatching, and is a subset of the region of linear stability.
It is shown in this Section that if (5) is not satisfied there always exist
self-sustained oscillations of the digital filter and hence (5) is both a
necessary and sufficient condition for absence of self-sustained osecilla-
tions.* One way to avoid the oscillations in question is simply to impose
the requirement (5). This trick has its limitations, however, for it clearly
restricts design capabilities. The region of the s-plane which is shaded
in Fig. 4 shows the allowable pole positions. Roughly speaking, one con-
cludes that there are desirable filter characteristics that can be realized
with this restriction and there are desirable characteristics that cannot.

It is not our purpose here to outline those applications for which (5)
will not be restrictive; we proceed to sketch the situation when |a | +
| 5] > 1 and the threat of osecillation is present. Sections III and IV
contain, we helieve, a novel and interesting mathematical treatment of
the general problem of classifying the self-oscillations of the nonlinear
difference equation (1). However, for the user of digital filters a simple
proof of the |a | 4+ | & | > 1 being sufficient for threat of oscillations is
of more immediate interest. After reading the simple proof of this fact
given next in the present section, such a reader may wish to proceed
directly to Section V.

Consider the possibility of undriven nonlinear operation giving a de

* I. W. Sandberg has informed the authors that the necessity and sufficiency of
](:?)Bho]l_dirll{g for absence of oscillations has also been obtained jointly by him and
. b. JacKson.
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output, that is, y, = y for all k. Equation (1), with z(f) = 0 becomes
y = f[(a + b)y). Assuming for definitness that y > 0, we can easily see
from TFig. 2 that the above equation will be true if (@ + by = y — 2,
which implies ¥ = 2/(1 — @ — b). One can show (see discussion follow-
ing equation 17), that this y will have magnitude < 1 provided only
that the tap values a and b lie in the region labeled I in Fig. 3. Thus a
consistent de oscillation is always possible for all (e, b) pairs in this
region. Next consider the possibility of a period 2 oscillation. This
amounts to finding a consistent solution to y = f[(b — a)y]. Proceeding
as before we obtain
_ 2
YTi1¥a -

Thus y, will be given by (— 1)y, and will have magnitude less than unity
if the (a, b) pair lies anywhere in region II of Fig. 3.

I1I. FURTHER ANALYSIS OF THE OSCILLATIONS

To analyze equation (1) in greater detail, it is very convenient to
write it in the form similar to (2),

y(t +2) — ay(t + 1) — by()) = 2 au( + 2 —n), (6)
n
wT
R T NNy
N ™
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Fig. 4 — Pole locations in the s-plane (shaded region) realizable under the constraint
that la) + 5] < 1.
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where u(t) is a square pulse of unit height that one may conveniently
think of as lasting from { = 0 until ¢ = 1. This, of course, means that
one interprets the solution of (6) to be a piecewise constant function
like the actual output of the digital filter. For mathematical manipula-
tions it is sometimes desirable to also interpret (6) as a difference equa-
tion, defined only for integer ¢. In this case one would write that u(t — =)
= §,, where §,, is the familiar Kroneker symbol.

The point of the right side of (6) is simply to keep | f(v) | < 1 re-
gardless of what value v has. From Fig. 2 we see that if | | < 1, this
added term is not needed and we take a, = 0. If 1 < v < 3 then we take
a, = —2,and if —3 < » < —1 we take a, = +2. Since we have that
| ¥() | < 1and that linear stability (see Fig. 3) implies |a | < 2,|b | <1,
we need not consider further values of | v |. Thus in (6) a, = 0, &2
depending on whether or not »(t) = ay(t + 1) + by(t) crosses the lines
v = 1. It will be convenient to have a word for such crossings; we
shall call them ‘“clicks”, borrowing a favorite word from FM theory.
Then @, = 0, -£2 depending on whether or not a click does not, or does,
oceur.

Note if one knew what the click sequence {a,} was, one could solve
(6) simply by using the clicks to be the driving term for a linear equation.
We are mainly interested in describing the self-sustained steady state
oscillations of arbitrary period N. Hence initial conditions will play no
essential role for us, for while they determine which oscillating mode
appears as ¢ — o, they play no role in describing the modes. Our pro-
cedure will be as follows:

(7) Assume a click sequence of period N;
Qo ;, @ , 2y " , G-y

Qiv+r = A - l=0,1,"' (7)
0=k<N-1

(i7) Using the assumed {a,}, find the steady state solution of (6).
However, only solutions that have |y(t) | < 1 for all ¢ are allowed.
(#%7) Check that this steady state solution actually generates the as-
sumed click sequence.

In carrying out the above program for some simple cases we observed
that step 477 never seemed to yield anything new. Indeed, surprising as
it seems at first glance, step 77 never has to be carried out. If one obtains
a solution with | y(¢) | < 1, this solution is consistent. That is, it auto-
matically generates the assumed click sequence. The proof is simple.
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One calculates the argument of the function f from (6):
ay(t + 1) + by() = y(t +2) — 22 au(t + 2 — n). (®)

We have a click at time ¢t + 2 = mif | ay(m — 2) + by(m — 1) | > L
From (8),

lay(m — 2) + by(m — 1) | = [y(m) — anl. 9)

Note then if in (9) @, = 0, then | ay(m — 2) + by(m — 1) | = [ y(m) |
< 1; thus if there is no click at a particular time in the assumed click
sequence the “solution” will not generate one. Next assume @, = +2;
then

ay(m — 2) + by(m — 1) = y(m) —2 < —1, (10)

where we use | y() | < 1 again. Equation (10) says if a positive click
is present in the assumed click sequence then the solution obtained from
the linear equation (6), given by this click sequence, will reproduce the
positive click. Obviously the same argument holds for a negative click,
a, = —2, and the proof of this point is complete.

The steady-state solution of our fundamental equation (6) for an
arbitrary click sequence {a,.} of period N is derived in the appendix.
If we define

AN_I(%) = 4 (11)

and
D(z) =7 —az— b, (12)

andletr, ,7 =1, --+, N, be the N Nth roots of unity, then the (periodic)
output values are given by
1
N AN —1(_)
Til &

yk=N1“Z;WT.-- (13)
The above expression gives the {y,} output sequence for any click se-
quence. We emphasize, however, that it is only a solution correspond-
ing to a self-sustained oscillation of the digital filter if we have lye | <1,
all k. Whether or not this is true depends on the particular click sequence
assumed.

Another form of the solution can be obtained by manipulation of (13).
To write this down, define

bY = (@hoy-n + Groronsn) /2, (14)
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where we understand @; = 0 if j does not lie between 0 and N — 1,
inclusive, and @; = a; if it does. One of the @’s in (14) will thus always be
zero and b'® has values of =1, 0. The other form of the solution is then

Yo = . E (k)[ P1 — P2 N]

Pl“Pen=u 1—p l—pz

k=0,1,---,N—1 (15

where p; are given in (3).

In (15) we have N vectors of dimension N, namely the {b;"} k =
0,1,2, -+, N — 1. Note from (14), however, that they are all cyclic
permutations of one another. Hence we may refer to the b vector, b, of
a solution, understanding that the b and all its cyclic permutations
generate a solution in the sense of (15). Note that a eyclic permutation
of the y, has no real significance here; it simply changes the origin of
time.

An interesting property of the solutions which we have written down
follows from the fact that if we transform the point (e, b) in the ab-plane
into another point by

a—a=—a (16a)
b—b =b
then under this transformation
P17 PL T TP (16b)
pz —* Pz." = —pP1 -

The property is this: Let N be an even integer and letb = (bo, b1, - -+,
by—y) be a click vector generating a solution at point (a, b). Then the
vector b’ = (b, —by, ba, —bs, -+, by_1) generates a solution at
reflected point (—a, b). The proof is simple. Note from (15),

2 m m
y' = Eb;“"[ o ,N]

P P2 1 — pf pa

—P3+Pxn 1— o

_ Z( 1)k+nb [( PziN ( Pl)n] — ( l)k )

Hence if |y | < 1 then |3’* | < 1. Note that the proof also supplies
the value for ' in terms of y'*’. This theorem will be used later to
generate new solutions from old ones.

Before leaving this general discussion in favor of exhibiting some
solutions in the next section, we list a few more observations related
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to the click vector b. The click vector b, whose only allowed component
values are =1, 0, completely characterizes the associated oscillation.
Clearly there can then only be a finite number of oscillations of given
period N. This number is upper bounded by 3", but will generally be
much less. Also note that a cyclic permutation of the components of b
cyclically permutates the output values 3", and this latter is merely a
shift in time. The permutated values are not physically distinct.

Also note that if we perform b — —b then y — —y, and a solution
of opposite sign is obtained. While this may often be distinguishable
from the first solution, it is trivially related to it. Finally if one were to
count the number b vectors of dimension N that yield new information,
one would wish to exclude subperiods of N. Thus if (+, 0, 0) is an gen-
erating b vector for period 3, (+, 0, 0, +, 0, 0) generates a period 6
oscillation but this is not new information. We have not solved the prob-
lem of counting how many of the 3" vectors are left after we impose the
requirements of cyelic shifts, sign changes, and subperiods. At any rate,
it is essential to test the ones that remain to check that they generate
allowed solutions, | y* | < 1.

IV. SOME EXPLICIT PERIODS AND REGIONS OF OSCILLATION

Now for a few explicit solutions. Consider the possibility of a de
“oscillation”, namely, set N = 1. The only nontrivial click vector is
b = (4). The solution is more immediate if we use (13). We have

2

“1—a—-1b

(17)

for the de value of output. For what values of @ and b within the triangle
of Fig. 3 will we have |y | < 1? We require
[1—a—0]|>2 (18)
which is equivalent to either
l—a—0b>2 (19a)
or

—14+a-+b>2. (19b)

Inequality (19a) (coupled with the linear stability requirement) defines
the triangle labeled “I”’ in Fig. 3, while (19b) is outside the stability
region and needs no further consideration. Thus any portion of the
region ¢ < 0 that we have not excluded from osecillations has now been
shown to have them. They are of period 1; other period oscillations may
(and do) occur in this region.
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At this point it is amusing to use an earlier remark on the possibility
of generating new solutions from an even period one by “reflection”.
Letting N = 2, the click vector b = (+, +) certainly generates a period
2 oscillation (albeit one with subperiods) in region I. Then the click vec-
tor b = (4, —) generates something really new: a period 2 oscillation
in the region labeled IT in Fig. 3. The amplitudes of the output are

yO = (D, a>0 (20)
Y 1+a—b"’ :
One more possibility of a click vector exists for period 2, and that is
b = (4, 0). From (13) we write for possible output values

1 1
Yo = 77— + __
1 a b 14+a—0b @1
1 1

T "a—-b 1+a—10b

After a little uninteresting analysis one can conclude that we cannot
have | yo | < 1, |1 | < 1in (21) for any allowed values of @ and b. Thus
there are no other period 2 oscillations.

On to period 3. Now there are four click vectors which must be con-
sidered. These are (+00), (+40), (+—0), (<-4 —). Even in this case
an exhaustive check that the “solutions’ generated are legitimate ones is
trying. Therefore, we resort to a trick; we look for periods which may
exist in the immediate neighborhood of the point (¢ = 0, b = 1). This
means p, = %, p; = —t. In this immediate neighborhood p, = p%, and
(15) reads

2 '« b
y—Iszm’gl_zN, (22)

where we have let z = p, . Letting N = 3, z = 7 gives
Yo= —bo+ b + b
h = —b, 4+ b, + b (23)
Y2 = —b; + by + b, .

We now require i, = =1 as a test for the click vector b. We see that
only (400) qualifies as possibly yielding a solution in the neighborhood
of (@ = 0,b = —1). A computer study shows that indeed the solution
extends into the interior of the triangle and the region found is shown
in Fig. 5. This immediately implies existence of the period 6 oscillation
generated by (+00—00) in the reflected region. Similarly, a period 5
oscillation region (with the concomitant period 10) generated by
(4-0000) is shown in Fig. 6.
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o | 1 ! |
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b

Fig. 5 — A region for period 3 oscillations,

It is very tempting to conjecture that the point (¢ = 0,b = —1) isa
boundary point of any allowed region of oscillation. If this is true, a
procedure like that used above may eliminate some otherwise very

respectable b vectors from consideration. Note that for N = 2, b =
(+, 0) satisfies the required econdition at p, = 7, but we have shown this

b
-1.0 -09 -0.8 -0.7 -0.6
0
| \ T 1
-0.2-
| \
a
-0.4-
-06
-o.8L

Fig. 6 — A region for period 5 oscillations.
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ouTPuT = f (V)

o] 1 INPUT =V

Fig. 7 — Zeroing arithmetie, shown above, also gives rise to oscillations.

is not extendable into the interior of the triangle. Hence existence at
2z = % does not guarantee an allowed solution.

V. STABILITY WITH A MODIFIED ARITHMETIC

In an attempt to eliminate these oscillations, proposals have been
made which rely on detecting overflow. One such suggestion dictates that
when overflow occurs, the adder is directed to shift out zero. For ref-
ereace we call this zeroing arithmetic. The effective transfer funetion of
the adder for zeroing arithmetic is given in Fig. 7. However, it can be
shown by numerical example that such a procedure still leads to oscil-
lations. Another possibility, “saturation arithmetic,” is displayed in
Fig. 8. Here a one (with the appropriate sign) is put out when overflow
is detected. The remaining portion of this paper is devoted to proving
that saturation arithmetic leads to stable operation whenever linear

theory would predict it to be so.

To begin, we suppose for the moment that we ignore the fact that
the digitally implemented adder is nonlinear. Then the second-order
linear difference equation which governs the behavior of the undriven
system has solutions y, which may be described as follows:

Case 1: Complex roots for characteristic equation
Re K, exp (—ak), K, and « complex, Rea > 0.
E=01,2 . (24

o
a
Il

Case 2: Real but unequal roots

y, = K, exp (—ak) + Ky exp (—Bk). K;real; «>0, g>0. (25)
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Case 3: Real and equal roots
y, = [K, + K.k exp (—ak). K;real; a > 0. (26)

Using this information, coupled with knowledge of y; and y;., for some
j, it is easy to give a bound on the magnitudes of all future (=)
values of the output and to show this value goes to zero with increasing
j. This is just another way to say that the solutions go to zero for the
linear case. In the nonlinear case we cannot exclude the situation that
some /., will exceed unity and the nonlinearity will be operative. For
saturation arithmetic the offending value must be set to unity if, for
example, ¥,,, > +1. We can, for conceptual purposes, regard this as a
“squeezing” of the output from a value greater than unity down to the
value one which is performed in a continuous fashion. The erux of the
proof now comes in showing that the partial derivative of our bound
(on future outputs) with respect to the most recent output y.. has, for
saturation arithmetic, the same sign as y,., . Hence decreasing a value
that is too large in magnitude will decrease the bound as well, and it
will go to zero at least as fast as it does for the linear case.

To show how the above outline works, consider first the linear case
with complex roots. From the form of the solution

y» = Re Kyexp (—ak), Rea>0, £=0,1,2,---,
it is clear that if we define
B, = |K,| (27)

then 32 < B, for all k& = 0. We now express B, in terms of the values

Yo, ¥1 which are initially stored in the shift registers to yield

. . - _ 2

This suggests that one define the more general set of numbers

[yi+1 — Y Re exp (_aﬂ?. (;)(])
[Im exp (—a)]’ -

Clearly, from the way that B; is defined, we have that

y. = Re K; exp [—a(k — )], kzj (30)

where K; is some appropriate complex number that satisfies
B; = |K:' Iz- (31)
From (30), the additional inequality that y: < B; forall k = jfollows,
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Furthermore, one can see by comparing (30) and (24) that
| K, " = | Ko |* | exp (—aj) |*. (32)

Hence, since the real part of « is positive, B; goes monotonically to
zero with increasing j.

To generalize the above arguments to a nonlinear situation of in-
terest,* consider the following equation which follows from (29):

9B; 2 - [Wias — v, Re exp (—a)]. (33)

y;+1  [Im exp (—a)]
Now imagine B;_, has been calculated from values stored in the registers.
From linear theory we predict y'%) and B{*’ < B,_, exp (—2a), by (32).
Now if the y!}) generated by the linear equation were too large, say, then
decreasing it to unity would, according to (33), decrease the bound B; if
we knew that

Yiro — ¥; Re [exp (—a)] = 0 for yii) = yim = yil,  (34)

where y{%) is the linear prediction for y;., and y;7) is the correct value
for the nonlinear circuit resulting from “squeezing” y{% down. Since
ly;| = 1 and Re exp (—a) < 1, (34) is always true for saturation
arithmetic (see Fig. 8) because y'°) = +1 (assuming y{% > +1) and
(34) can never swing negative. Similar things happen, of course, if
¥i+1 < —1. Thus the bound decreases at least as fast as for the linear
case (which is exponential) and stability is assured. For zeroing arith-
metic y{¢) = 0, and thus the appropriate sign for (34) cannot be guar-
anteed which is in satisfying agreement with the known instability for
this case.

For the next case of real but unequal roots, we now have reference to

equation (25) and define our initial bound as
B, = 2(K; + K3)
[, — exp (—a)yol® + [ — exp (—Bwol* (35)
[exp (—a) — exp (—B)]

The remaining details are too similar to those of the preceding case to
warrant recording again; stability for saturation arithmetic holds here

as well.
The last case to discuss occurs when we have real and equal roots.

=2

* B; calculated from (29) is a bound on future outputs for the nonlinear as well as
the linear case. If B; < 1 the two cases coincide, while of B; > 1 the conclusion
follows equally trivially since |y:| < 1 for the nonlinear situation.
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outpPuT=f (V)

=1 o] 1 INPUT =V

Fig. 8 — The above nonlinearity corresponds to saturation arithmetic and leads to
stable behavior.

This situation, represented for the linear equation by equation (26),

is more difficult to treat than the previous ones. The analog of (27) and

(35) now is

4K}
2

23

B, = max (36)

That (36) yields a bound follows from the facts that (for ¢ = 0)

y2 < max [(K, + K.l) exp (—at)]®

IIA

2 max [K} + K3t’] exp (—2at)
t

max K; exp (—2al)
4max ] '

A

max K2t® exp (—2at)
K3
Kiexp (—2)

a

It

4 max

K}
K3

2
o

A

4 max
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Since
2 __ .2
K= (37
K, _ (hexpa— )
a2 a? H
we define our general bound as
vi
B, = 4 max (pus expa — y)* (38)
C[2
Using the solution y; = (K, + K,j) exp (—aj), we see that
2
o, = Yin &Pa = yy) (39)

a

decreases by the multiplicative factor exp (—2q) for every unit increase
of j. Further, suppose that B; = 4y? for some j. That is, suppose

2
(Wi exr;ga Yi) <. (40)

This implies
Yie < ¥+ ) exp (—2a), (41)

and so if next time B;,; = 4y%,,, then we have decreased by
(1 + @)® exp (—2a) < 1. On the other hand, if at the next step we have
to choose B;,, = 46,,,, we see

B!’"‘l Bi+1

8.
et 2 W e S <
B~ =6 = exp (—2«). (42)

Likewise if we go from 46; to 46;,, we decrease by exp (—2a). Finally,
a ‘“transition” from 40; as a bound to 4y%,, decreases the bound by a
multiplicative factor of (1 + «)® exp (—2a). To see this we note that,
by assumption,

B,' — 4[yf+1 exﬂ?‘!a yr] g 4y? . (43)
Using the left-hand equality in (43) implies
B,)}
ly,-u[emaé?%iJrlm- (44)
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while B; = 4y yields

AL
ijlé(—?- (45)

Using (45) in (44) then allows us to deduce that
B = 4?ﬁ+| =1+ a)z exp (—2a)B; (46)
as was claimed. To extend these arguments to the nonlinear case we
again observe that
dB;
Y41

v

0 (47)
for saturation arithmetic.

V1. GENERALIZATIONS TO OTHER STABLE NONLINEARITIES

Aside from the three nonlinearities already mentioned, there does
not appear to be immediate engineering interest in seeing which other
nonlinearities will or will not give rise to stable behavior of the filter.
Having come this far, however, it is hard to resist asking if the method
of proof we have used, or some slight extension of it, does suggest other
nonlinearities for which stability will hold. The extension we consider
is not to require

dB;
el
a y i+l = 0
all during the “squeezing” operation, but merely that
B% — BY z 0, (48)

where B% is the value of the bound using linear theory and B is the
“eorrect” value. An inspection of the previous proofs shows that this

is equivalent to
Wh, — ay)’ — Wi, — ay)* >0 (49)
for all real @ such that |a | < 1.
A little manipulation reduces (49) to
(yEy — YD) Wher + Yisr — 2ay) Z 0. (50)

Assuming y%,, > 0, the first term in (50) to be nonnegative, and | y, |
< 1, makes it apparent that

Yoo +yia 22 (51)
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is sufficient. The ‘“‘stable nonlinearities” deduced from this kind of
reasoning are outlined in Fig. 9. Thus any nonlinearity whose graph
coincides with the identity function on the interval [—1, 1] and whose
remaining portions lie in the closed shaded region of Fig. 9 will be stable.
The function in these regions need not be continuous and need not obey
f(—u) = —f(u).

An even higher degree of generality is achieved when we realize that
nothing in our proofs required the nonlinearity f(u) to be the same for
successive values of the parameter k. This is tantamount to allowing the
nonlinearity to be random in the following manner. Suppose a value of
Yr.1 > 1 has been predicted from linear theory (see Fig. 9). The per-
pendicular P to the » axis through y7,, intersects the shaded region
shown in Fig. 9 along a line segment. Choose randomly from this line
segment the ‘“‘value” of the nonlinearity to give y¢,, . The discussion in
this Section shows that the solutions of the difference equation

Yerz = flayesr + byil (52)

which has the stochastic nonlinearity just described will be stable when-
ever the linear version has stable solutions.

APPENDIX

Derivation of the Steady-State Solution
We obtain the steady-state solution of our fundamental equation (6)

using z-transforms. Recall that if one has a bounded sequence of number
{a,}, the z-transform is defined by

) = Z: 0™ (53)

where (53) converges and is analytic outside the unit circle, |2 | > 1.
It is easy to show that if {a,} is periodic of period N, that is if ay., = a,,
then (53) becomes
1
Aﬂ-l(;)

1—2z2"

@) = (54)

where Ay, is the polynomial of degree (N — 1) in 1/z given by

() = T a (55)

n=0

The N poles of f(z) at the N roots of unity are apparent from (12), and
there are no other poles.
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Fig. 9— Any nonlinearity whose graph coincides with the identity function on the

interval [—1, +1) and whose remaining portions lie in the (closed) shaded region will
be s{n}able. The possibility of generalizing this to a stochastic nonlinearity is also noted
in the text.

Denoting by ¥ (z) the z-transform of y() excluding the additive terms
involving initial conditions (since these will damp out because of linear
stability) we have from (6) that

1
a-()
Yi) =

(2 — az — )1 — z_N). (56)

The z-transform of the steady-state solution ¥(z) must still be ex-
tracted from Y(z). Since the unit circle | 2| = 1 corresponds to the
frequency axis if one were using Fourier transforms, we know, by anal-
ogy, the state steady-state portion of (56) will be the pole-terms. Let

ri,1 =1, ---, N be the N Nth roots of unity and define
e 1) _ N-1 (_1):\@1—::(1)& 11— o
@ (z_k;r, z —l_}.- (57)
r, oz

Note (57) implies
raf 1
@ () = w (59)

Then from (56)-(58) we have

1
N A N-—-1 (;l)

P@) = Zl (L _ ;)_N,.‘_.D(r.-) |

(59)
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where we have let
D@ =2 —az — b (60)
Using (57) once more, the steady-state solution (59) may be written

L1 g Ao ()

@) = [_ "N & r:D(r;)

(61)

Referring back to the discussion at the beginning of this section, we see
that (61) is the z-transform of a sequence {y.} of period N where

f, o e (o)

y; = coefficient of 7" in l Z DG ]
k=0,1,.--- , N — 1. (62)
Using (57) in (62) we obtain
v A3
E D(T' ) ?'i b] (63)

where, in writing (63), we have used the fact that 7 = 1. Expression
(63) thus gives the {y.} sequence for any click sequence. It is a solution
corresponding to a self-sustained oscillation of the digital filter only if
we have |y | < 1, all k.

Two sums appear in (63). The explicit one shown is the sum over the
roots of unity; the hidden one is the polynomial 4,_,(1/r;). We will
exhibit another form of solution (63) by explicitly doing the sum over the
N roots. We begin by writing

Ay- (T) ZET, p: = £1,0. (64)
1 =0 l

Thus p, are the coeflicients, except for the factor of 2, of the polynomial
Ay_1(2). We also write, by factoring D(z) and expanding in partial
fractions,

1 1 _ 1 1 _ 1 '
D(z) - (2 — o) — p2) B P P2 [3 - P [ Pz] 65)

Now note that if z is such a number than 2% = 1, we have (since | p | < 1
and |z | =
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R

Let us look at the sum of the n = 0, N, 2N, ete., terms in the right side
of (66), that is

— 1 + p;\' + p'zl\' + pﬂ.\' + . = 1 N’ (67)
—p
Treating the sum of terms
n=1N+12N+1,---
n=2N+22N+2, ---
n=N—-—1,N+(N-1,2N+(N—-1), ---
similarly, we have
1o _1 1 e i_J
z—p_zl_p“'[1+z+zz+ +2N_, (68)
Tinally letting z = 1/7; gives
1 e n
e e S (69)
= - 1 — p n=0

Using (65) and (64) in (63) yields
N=1

_ 1 2 a—( :&)
yk—m_pzNEr,- >

1
i =0 T

RSN A )]
[r.- Zor (1 R (70)

Two sums in (70) are immediately done. First look at the sum over the
roots of unity. This involves observing that

T et [N if k—=l—1-n=0 mod N,

(71)
lO otherwise.

The congruence indicated in (71) can only be satisfied here if [ = k —
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l —norifl =k —1—n -+ N. Thus it is useful to define
25,‘.” = Gp1-n T Cio1-ntw (72)

where we understand a; = 0 if j does not lie between 0 and N — 1, in-
clusive, and @; = a; if it does. One of the @’s in (72) will thus always be
zero and b'*’ has values, like the p’s, of =1, 0. Using the discussion above
surrounding equations (71) and (72) we perform next the sum over [
and write another form of the solution:

2 N—1 n n
m-=—**—2b.‘.“[ A P2 ]

P1 = P2 n=0 l—pf_l—pg
k=01,--- ,N—1. (73
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